The Body: The Complete HIV/AIDS Resource
Follow Us Follow Us on Facebook Follow Us on Twitter Download Our App 
Professionals >> Visit The Body PROThe Body en Espanol
  • Email Email
  • Comments Comments
  • Printable Single-Page Print-Friendly
  • Glossary Glossary

Understanding the Puzzle That Is Our Immune System

September/October 2011

 < Prev  |  1  |  2 

Mucosal Immunity

Mucosal immunity includes a one-inch barrier of mucous membrane cells which is often the first line of defense. Gut-associated lymph tissue is a lining in the gut where a lot of HIV is found and is a big area of current research efforts.

T-Cell Receptors

T-cell receptors are on the surface of every T-cell and "introduce" a foreign invader to antigen-presenting cells. The receptors help to recognize the cell type.

Putting the Puzzle Together

There are two "arms" or divisions in our immune system puzzle that incorporate separate cells and immune functions to deliver a team approach in fighting infections.


One arm is known as the innate immune system that can also be referred to as "non-specific" and is the first line of defense. Key sites of innate immune activity are the skin and the lining of the respiratory, intestinal, urinary, and reproductive systems that are natural barriers to outside germs. APCs -- macrophages and dendritic cells -- and certain antibodies patrol these key sites and react to anything they do not recognize, anything different or foreign to the body. APCs make antigens to the invader and either gobble them up and destroy them, or deliver them to a CD4 cell. In our puzzle analogy, you might think of the innate immune system as the first pieces you lay out on the table, like the border of the jigsaw puzzle.

The more advanced second arm is known as adaptive or "acquired" immune response. Once the body has been exposed to a pathogen, a phenomenon known as immunologic memory occurs. This is where T-cells, B-cells, macrophages, dendritic cells, and antibodies remember a specific pathogen and prevent it from invading again. Some cells such as macrophages fall into both arms of the immune system, acting as links between the two divisions.

There are also two different strategies that are employed to get the job done in ridding the immune system of pathogens. One is called the humoral immune response that uses antibodies to help identify and destroy invaders. The cellular immune response involves cell-to-cell killing using T-cells. Both are essential for the most effective immune response.

Without one of these immune system divisions or strategies you would be like a knight wearing only your suit of amour without the helmet. These mechanisms work collectively to make the immune system a complex yet comprehensive protection for our bodies.

From Birth to Death: The Life of a CD4 Cell

People with HIV and their care providers discuss CD4s for life, as they are an important measurement of the status of the immune system. It is part of the language of HIV to understand the function of these cells and the significance of their number. An AIDS diagnosis is based on having 200 or fewer CD4s. Treatment guidelines currently recommend starting antiretroviral therapy at 350-500 CD4s, or earlier.

As mentioned above, CD4s are responsible for the coordination of the immune response. They are born in the bone marrow as "progenitor" white blood cells. If the destiny of the immature cell is to become a T-cell, it goes to school in the thymus. It is here where the cell will be made a CD4 T-cell (or CD8) for the span of its life. The T-cell receptor or TCR is randomly determined in the thymus. TCRs are like keys that enable the baby cells to enter their target, therefore starting an immune response.

When roaming in key lymphatic organs, the new, or "naive," CD4s will eventually encounter an invader and begin the process of the immune response. Here is where the cell is activated and proliferation begins. Many duplicate cells are made, sort of like adding new troops to an invasion. As in a battle, some of the cells die, but some survive to become "memory" CD4s. The cells have graduated and are now equipped to protect the body from pathogens they have met before if they ever encounter them again. After they do their jobs, they will either divide and make more of themselves, or die in a process known as apoptosis.

Certain memory cells go into hiding or what is called a "quiet" state. These elite cells are a growing area of interest in HIV cure research since they can harbor what is known as "latent" HIV. If scientists can figure out a way to activate these quiet memory cells, new HIV virions (baby viruses) would be unleashed into the plasma where effective antiretroviral therapy could functionally rid the body of HIV.


Image by Mike Tyka.

How HIV Dislodges the Puzzle

Now that our puzzle is nearly completed, think about how upset you'd be if the table it was on was upended. This is what happens when HIV invades the immune system, dislodging and even destroying pieces of the puzzle.

HIV enters the body, most often in the mucosa, and interacts with the dendritic cell that does its job in sweeping up the virus and presenting it to the CD4 cell. Once inside the lymph node, if the HIV antigen on the dendritic cell fits into the CD4 T-cell's receptor, it will begin its invasion. HIV has already hitchhiked its way into the CD4 T-cell just because the immune system is doing what it's supposed to do.

At this point, naive CD4s are becoming infected as they are recruited by the entry of HIV into the body. HIV will multiply and many virions will be produced by the activated CD4s. It's like a copy machine gone wild. This is the point of acute infection where viral load skyrockets.

We also know that some HIV-specific memory cells die, but some go off and rest in what are known as reservoirs. Still others remain defective. Some of these cells remain infected after they are activated and return to a resting state, hiding out for years until they are awakened again with the HIV inside of them.

CD8 T-cells go about their normal response to HIV as they are employed by the CD4 cell to kill. Yet because of HIV, the infected CD4 cells don't properly grow up, so they give weak or ineffective helper signals to the CD8 cells. This process is called anergy. Helpless CD8 T-cells are also ineffective, all caused by HIV in the first place.

Now that HIV has messed up the memory T-cell component, it will also duplicate itself, adding new fuel for the over 700 million naive T-cells being produced in the thymus every day. The entire cycle repeats itself, over and over, again and again, day after day, until the immune system loses much of its work force.

In most cases, HIV will eventually win if treatment is not initiated, employing its insidious and underhanded ability to upend the immune system puzzle.

Ending HIV Once and for All?

There has been great success with antiretroviral therapy in turning around the devastation of the early days of the epidemic when sickness and death were common. But with many unknowns as to how to mend the immune system, even when people are successfully treated, there still remains smoldering HIV hiding in those resting cells.

Yet there is new hope in controlling inflammation caused by the immune response, which would hopefully prevent some of the longer-term non-AIDS conditions now experienced by many people living with HIV into their golden years.

It is also exciting that research into a cure is gaining momentum, especially after Timothy Brown -- the Berlin Patient -- was cured of HIV. His case is providing the needed push, evidence that a cure for HIV is possible. Now, four years after his cure, more research is entering into clinical trials, including treatment vaccines, gene therapy, and other immune-based therapies such as IL-7. The possibility of a cure has opened the door for fitting the pieces of the immune system puzzle together once and for all.

Diagnosed with HIV in 1988, Matt Sharp's long history as an AIDS advocate includes belonging to ACT UP Golden Gate; directing the education programs at Test Positive Aware Network in Chicago and Project Inform in San Francisco; and helping to found the AIDS Treatment Activists Coalition. Currently, he acts as an international consultant, providing training services to HIV service providers, non-profit organizations, and the pharmaceutical industry.

About these images:

Mike Tyka is a Research Fellow at the University of Washington. Using molecular visualized software called PyMOL, Tyka created these images. He is also author of the Beautiful Proteins blog (

 < Prev  |  1  |  2 

  • Email Email
  • Comments Comments
  • Printable Single-Page Print-Friendly
  • Glossary Glossary

This article was provided by Positively Aware. It is a part of the publication Positively Aware. Visit Positively Aware's website to find out more about the publication.
See Also
More on the Immune System

No comments have been made.

Add Your Comment:
(Please note: Your name and comment will be public, and may even show up in
Internet search results. Be careful when providing personal information! Before
adding your comment, please read's Comment Policy.)

Your Name:

Your Location:

(ex: San Francisco, CA)

Your Comment:

Characters remaining: