Advertisement
The Body: The Complete HIV/AIDS Resource
Follow Us Follow Us on Facebook Follow Us on Twitter Download Our App
Professionals >> Visit The Body PROThe Body en Espanol
   
Ask the Experts About

Fatigue and AnemiaFatigue and Anemia
          
Rollover images to visit our other forums!
  
  • Email Email
  • Glossary Glossary


EGCG
Jul 28, 2007

Hello Dr. Bob,

thanks for you fantastic work. I have four questions for you.

What do you think about taking EGCG in the hope of slowing down CD4 cells count decrease?

As for serious stuff, what can you tell us about the new drug, maraviroc?

It inhibits CCR5 receptor, which sound good. Any good oral CXCR4 inhibitor on the orizon?

What if Jeb Bush becomes president of the United States?

Thanks,

Heide

Response from Dr. Frascino

Hi Heide,

Four questions for me and four answers for you!

1. EGCE (epigallocatechin gallate) is a chemical found in green tea. Preliminary research suggests this compound may be able to block the ability of HIV to invade and destroy CD4 cells. However, this research is still extremely preliminary. There might be some additional information being presented at this week's HIV/AIDS meetings in Sydney Australia. At this point, we cannot recommend it as a therapeutic intervention, but green tea is a tasty beverage with lots of purported health benefits, so why not have a cup for the social pleasure and taste? (See below.)

2. I recently covered this subject. (See below.) Nothing new to add since then.

3. CXCR4 inhibitors are in development, but not yet on the "orizon".

4. In that case you'll need to send future questions to my new address in Paris.

Dr. Bob

Green Tea May 8, 2007

I have recently read that green tea has certain chemicals that may prevent HIV from replicating. Do you have any information regarding green tea research?

Response from Dr. Frascino

Hi,

The chemical is epigallocatechin gallate or EGCE for short. The research is extremely preliminary, but it does appear the EGCE may inhibit HIV. See below. Stay tuned to The Body and we'll you updated on this and other new and evolving treatments for HIV/AIDS.

Dr. Bob

Green Tea Shows Promise in HIV Fight

November 3, 2006

In a new study, scientists report that test-tube experiments show a component in green tea blocks the ability of HIV to invade and destroy cells of the immune system.

That component is epigallocatechin gallate (EGCG). The flavonoid has anti-inflammatory and anti-microbial properties, and cancer drugs based on it are now in clinical trials.

Researchers have known for some time that EGCG inhibits HIV in lab experiments; the new research suggests how. Scientists from Baylor College of Medicine and the University of Sheffield have found that the EGCG molecule binds to the T-cell receptor site at which HIV seeks to attach to the cell.

Dr. Christina Nance of Baylor and Texas Children's Hospital said she and colleagues used nuclear magnetic resonance spectroscopy to examine the structures by which EGCG, the HIV surface protein gp120 and CD4 molecules bind together. They noted the frequencies emitted by the hydrogen, carbon and nitrogen atoms that make up the molecules and fed the data into a computer, which produced a molecular model showing that EGCG and HIV shared the same "binding pocket" on the CD4 cells. "One of the promising factors is that because this is a small molecule and binds to the same exact binding pocket as gp120, it may not inhibit the [normal] function of the CD4 molecule," Nance said.

In the laboratory, Nance said the amount of EGCG needed to inhibit HIV was about the same as that in two cups of green tea. She stressed, however, that any EGCG-based drug "would be part of a cocktail of drugs," and she said she does not recommend that people drink large amounts of green tea in the hope of preventing HIV infection.

The full report, "Epigallocatechin Gallate, the Main Polyphenol in Green Tea, Binds to the T-Cell Receptor, CD4: Potential for HIV-1 Therapy," was published online in the Journal of Allergy and Clinical Immunology (doi: 10.1016/j.jaci.2006.08.016).

new development in the drug Maraviroc Jul 25, 2007

Dear Dr.Bob,

Hope you are well. I was just watching the news in England when a story about the HIV drug called Maraviroc was discussed. It was said that in a few months the drug will be available on the NHS (national health service in England). As you undoubtedly already know, this drug is extremely promising, especially for people who have been on HIV medication for long periods of time and may have a degree of resistance. Do you have any thoughts on how ground breaking a development this is in the fight against subduing the virus once in the body? I am certainly very encouraged. Thanks from me from England

Response from Dr. Frascino

Hi,

Maraviroc is in a new class of anti-HIV drugs called "CCR5 Inhibitors." They target a very early stage in the infection process the cell-entry stage. These drugs have been in development for quite some time and maraviroc is primed to be the first to reach the market. I'll reprint some information about CCR5 Inhibitors in general and then some information about maraviroc that was presented at this year's Conference on Retroviruses and Opportunistic Infections. Stay tuned to The Body. We'll keep you informed as this and other new and evolving therapies are developed and released.

Be well! Let's all be here for the cure, OK?

Dr. Bob

CCR5 Inhibitors: Up and Coming New Agents

A new class of antiretroviral drugs came on the scene in 2003 with the approval of the first entry inhibitor, enfuvirtide (T-20, Fuzeon). Considerable research has been directed toward discovery of additional drugs that target the cell-entry stage of HIV replication, and CCR5 inhibitors -- agents that block viral entry via a novel mechanism of action -- are poised to join the antiretroviral armamentarium this year.

New Targets: Chemokine Receptors

In 1995, Fiorenza Cocchi, PhD, and Robert Gallo, PhD, then at the National Cancer Institute, and colleagues reported the discovery that three chemokines -- proteins secreted by T-cells that carry the CD8 surface marker (known as CD8 cells) -- prevent HIV from entering cells in vitro. Within months, other research teams reported that two chemokine receptors, CCR5 and CXCR4, play a critical role in HIV entry. (For a detailed history of early chemokine research, see "Chemokines and HIV" in the March 1997 issue of BETA.)

In the cell-entry stage of HIV replication, a protein called gp120 on the envelope of the virus binds to CD4, a protein found on the surface of some white blood cells. (Tcells that express the CD4 protein are known as CD4 cells.) The CD4 protein acts as a receptor for gp120, "unlocking" the cell and allowing the virus to enter. HIV also needs a second receptor in order to enter cells: CCR5 and CXCR4, two proteins expressed on the surface of some immune cells, are the key coreceptors for HIV entry. The chemokines described by Drs. Cocchi and Gallo -- RANTES, MIP-1 alpha, and MIP-1 beta -- are believed to be capable of occupying these coreceptors' binding sites or chemically altering the coreceptor proteins, thereby blocking HIV entry.

CCR5 and CXCR4 function as coreceptors for different HIV strains. When sexually transmitted, HIV typically establishes itself in the body as a non-syncytium-inducing (NSI) strain that preferentially binds to macrophages, immune cells that ingest and process pathogens in the blood and other tissues. For this reason, such strains are sometimes called "macrophage-tropic," or "M-tropic." CCR5 appears to be the key coreceptor for these strains of HIV; hence, they are also referred to as "CCR5-tropic."

In some individuals, however, NSI strains transform into syncytium-inducing (SI) virus, which preferentially infects T-cells and relies on CXCR4 (also called fusin) for cell entry. These so-called "T-tropic" or "CXCR4-tropic" SI strains are more aggressive than NSI strains and are associated with more rapid disease progression and poorer response to antiretroviral therapy. It is unclear why NSI strains sometimes convert to SI virus.

Some individuals simultaneously harbor both CCR5-tropic NSI strains and CXCR4-tropic SI strains of HIV; this kind of infection is called "mixed-tropic" or "dual-tropic" infection. Although CXCR4-tropic strains are most often seen in individuals with advanced HIV disease, more than half of people with advanced disease still harbor only CCR5-tropic virus. Since HIV can potentially use either coreceptor, there is concern that preventing the virus from using one coreceptor could select for strains that are able to use the other.

The CCR5-delta 32 Mutation

The CCR5 coreceptor was shown to play a role in HIV replication with the discovery that people who are homozygous for a genetic mutation that prevents the expression of functional CCR5 on their cells appear to have resistance to infection with HIV-1, the most common form of the virus worldwide. (The other form, HIV-2, is rare outside of West Africa.)

In August 1996, Rong Liu, PhD, of the Aaron Diamond AIDS Research Center in New York and colleagues reported that this CCR5-delta 32 mutation -- so named because 32 base pairs are deleted from the CCR5-expressing gene -- conferred resistance to HIV-1 infection in individuals with a history of multiple high-risk sexual exposures. Other research teams subsequently reported similar findings, and also observed that individuals heterozygous for the mutation experienced partial protection against HIV infection.

Individuals homozygous for the mutant allele are not entirely protected from HIV infection, since they can acquire virus that uses the CXCR4 coreceptor. In such cases, CD4 cell counts decline rapidly, but HIV viral load does not increase with corresponding speed, and disease progression is slow. Although only 40% of non-progressors carry the CCR5-delta 32 mutation, researchers speculate that variations in the expression and/or function of the CCR5 gene may be one of many factors in the continued health of non-progressing individuals.

CCR5 Inhibitors in the Clinical Development Pipeline The benefit conferred by the CCR5-delta 32 mutation and the fact that CCR5 is the coreceptor most commonly used by HIV in early infection make it a highly attractive target for antiretroviral therapy. Five experimental CCR5 inhibitors are currently in the clinical pipeline, and several more are in preclinical trials.

However, many challenges have hindered the development of a viable CCR5 inhibitor. Some early candidates were found to bind to chemokine receptors other than CCR5, while other experimental drugs showed little antiretroviral activity or had limited bioavailability in human trials. One agent that appeared promising, GlaxoSmithKline's aplaviroc, reached Phase III clinical development before trials were halted due to severe liver toxicity (which resolved after the drug was discontinued).

Two types of CCR5 inhibitor are now progressing through the clinical trials pipeline: small-molecule antagonists and monoclonal antibodies (mAbs). (See "Open Clinical Trials".)

Small-molecule antagonists are thought to "lock" the coreceptor into a conformation that does not permit binding by the HIV envelope protein. These CCR5 inhibitors are orally bioavailable and can therefore be taken in pill form; in the clinical pipeline, these include Pfizer's maraviroc (UK-427,857), Schering-Plough's vicriviroc (SCH-D), and Incyte's INCB9471.

In contrast, mAbs are believed to block HIV attachment to CCR5 by binding to distinct sites on the coreceptor. As proteins, mAbs are not orally bioavailable and must be injected. These agents include PRO-140, made by Progenics Pharmaceuticals, and CCR5mAb004, from Human Genome Sciences; both are in Phase I/II clinical trials.

In the Lead: Maraviroc

The first CCR5 inhibitor likely to become available is Pfizer's small-molecule inhibitor, maraviroc. The drug was the first CCR5 inhibitor to enter clinical trials and received fast-track status from the Food and Drug Administration (FDA) in 2006; it is now undergoing Phase III trials. An international expanded access program (EAP) for maraviroc is currently in the works (see "News Briefs"). Pfizer expects to file for licensing approval in early 2007; given the FDA's six-month review period, the company anticipates that maraviroc may be approved mid-year.

In a late-breaker session at the 16th International AIDS Conference in August 2006, researchers presented 24-week results of a Phase IIb trial of maraviroc. One purpose of this double-blind, placebo-controlled trial was to assess the safety and efficacy of the investigational drug in treatment experienced individuals with dual-tropic HIV infection: how would such participants respond to a drug that specifically targets the CCR5 coreceptor?

To enroll, participants had to be on stable antiretroviral regimens, have HIV viral loads greater than 5000 copies/mL, and have triple-class antiretroviral experience and/or harbor dual-class-resistant virus. The median baseline CD4 count was less than 50 cells/mm3. Of 186 enrollees, 70% were white and 26% black; 13% were women. Participants were randomly assigned to one of three groups: placebo, 150 mg maraviroc once daily, or 150 mg maraviroc twice daily; all groups also received optimized background therapy. Safety was assessed based on participant-reported adverse events, physical examinations, and lab tests. The primary endpoint was the change in viral load over 24 weeks for patients with dual-tropic virus at screening (n=167).

The decrease in viral load from baseline through week 24 was similar for the placebo group and the group receiving once-daily dosing of the study drug (0.97 log and 0.91 log, respectively), but was slightly greater for the twice daily dosing group (1.20 logs). Both maraviroc groups experienced larger mean CD4 cell increases (60 and 62 cells/mm3 in the once-daily and twice-daily dose groups, respectively) compared with the placebo group (35 cells/mm3). Similar frequencies of grade 3-4 adverse events, drug discontinuations, and deaths occurred in all three groups. The study investigators concluded that maraviroc was safe and well tolerated in this population with advanced HIV disease, despite the prevalence of CXCR4-tropic virus.

Several previous safety and efficacy trials evaluated maraviroc as monotherapy at doses of up to 300 mg twice daily (for one week to ten days) and 1200 mg once daily (for up to 28 days). Virological response to the study drug was encouraging; for example, a ten-day monotherapy study with doses of 300 mg once daily and twice daily demonstrated mean maximum viral load reductions of 1.60 logs and 1.84 logs, respectively. The most common treatment-related adverse events were headache, dizziness, nausea, asthenia (loss of strength), flatulence, and rhinitis (inflamed nasal passages); most of these were graded as mild or moderate, and no serious adverse events were reported.

Five subjects did, however, discontinue maraviroc in these studies: three due to postural hypotension (including one in the placebo group), one with elevated liver enzymes, and one with skin rash (in the placebo group). Liver function tests showed clinically significant increases in liver enzyme levels in seven patients taking various doses of the study drug, but no clear dose/frequency relationship was seen. Mild-to-moderate elevations in creatinine were observed in one study at 1200 mg once daily and in the placebo group. Investigators concluded that maraviroc is well tolerated at doses up to and including 300 mg twice daily.

Vicriviroc: Next in Line?

Following maraviroc, Schering-Plough's vicriviroc appears to be next in line in the clinical development pipeline. The drug has shown potent antiretroviral activity in clinical trials, and its long half-life may permit once-daily dosing. Vicriviroc's development has been rocky, however. The drug initially showed promise in a Phase II trial in treatment-naive participants, but Schering-Plough halted the study when subjects experienced early virological rebound (see "News Briefs," BETA, Winter 2006).

Similarly, a Phase II trial in heavily treatment experienced participants saw encouraging results by week 24: the three dosing arms (5, 10, or 15 mg vicriviroc daily) experienced mean HIV RNA decreases of 1.51, 1.86 and 1.68 logs (vs 0.29 log in the placebo group) and mean CD4 cell increases of 84, 142, and 142 cells/mm3 (compared with a decrease of 9 cells/mm3 in the placebo arm). However, the study was unblinded in March 2006 after five subjects in the vicriviroc arms developed malignancies. Study investigators and an independent safety monitoring committee concluded that no causal link between the study drug and the cancers could be determined, and the trial continued at the 10-mg and 15-mg doses.

Questions and Concerns

The science of chemokines and chemokine receptors is still young. In addition to the usual concerns that accompany any new antiretroviral drug -- including potential side effects, toxicities, drug interactions, and resistance -- CCR5 inhibitors come with a unique set of questions and cautions.

Tropism-Switching

First, an obvious concern is how patients with CXCR4-tropic or dual-tropic HIV will respond to long-term use of a CCR5-inhibiting drug. Will treatment with a drug that prevents the use of one coreceptor promote the evolution of virus that can use the other?

Evidence that drug pressure may indeed lead to "tropism-switching" comes from an AIDS Clinical Trails Group (ACTG) study described at the 13th Conference on Retroviruses and Opportunistic Infections, held in February 2006. In ACTG Study 5211, CXCR4-using virus emerged in 13 participants by the 14th day of vicriviroc monotherapy (eight subjects receiving 5 mg, three in the 10-mg group, two in the 15-mg arm, and one taking placebo).

Contrasting results come from a study by Mike Westby of Pfizer Global Research and Development and colleagues, published in the May 2006 issue of the Journal of Virology. Sixty of 62 patients who entered the study with CCR5-tropic HIV retained only CCR5-tropic virus after ten days of maraviroc monotherapy. CXCR4-tropic virus was detected at day 11 in two participants, but based on the genetic makeup of these strains, the authors concluded that these had emerged from a pretreatment viral reservoir and did not arise in response to treatment with maraviroc.

Immune Function

Second, the role of chemokines and chemokine receptors in immune response is still being explored. For example, a 2001 Lancet article reported an association between the CCR5-delta 32 mutation and decreased risk of tissue rejection in kidney transplant patients. This may be good news for CCR5-delta 32-carrying organ recipients, but it raises an important question: What unintended effects on immune response might arise from mimicking this mutation?

A recent study published in the January 2006 issue of the Journal of Experimental Medicine showed that individuals homozygous for the CCR5-delta 32 mutation were overrepresented among cases of West Nile virus (WNV) in Arizona and Colorado. The authors concluded that "CCR5 mediates resistance to symptomatic WNV infection,"and added that "these findings have important implications for the safety of CCR5-blocking agents under development for HIV/AIDS.

"While individuals with the defective CCR5 gene generally appear to have normal life spans, continued research is clearly warranted to elucidate possible consequences of pharmacologically inhibiting the immunoregulatory function of chemokine receptors.

Conclusion: Caution and Hope

A decade ago, BETA featured an article on "a new field of biomedical research: the study of chemokines" ("Chemokines and HIV," March 1997). The author speculated on the potential new therapeutic strategies that the study of chemokine coreceptors might yield.

Today, a new antiretroviral drug with an entirely novel -- and not entirely understood -- mechanism of action is just around the corner, and more than a dozen other CCR5 and CXCR4 inhibitors are in the clinical and preclinical pipelines. Existing data on maraviroc and other members of its class give cause for both caution and hope. Ongoing trials will need to address questions about CCR5 inhibition and its effects -- both intended and unintended -- but a more robust class of entry-inhibitor drugs is an exciting prospect.

Selected Sources Cocchi, F. and others. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV suppressive factors produced by CD8+ T cells. Science 270(5243):1811-15.December 15, 1995.

Dorr, P. and others. Maraviroc (UK-42, 857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrobial Agents and Chemotherapy 49(11):4721-32. November 2005.

Easterbrook, P. and others. Chemokine receptor polymorphisms and human immunodeficiency virus disease progression. Journal of Infectious Diseases 180:1096-1105. October 1999.

Feng, Y. and others. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872-77. May 10, 1996.

Fischereder, M. and others. CC chemokine receptor 5 and renal-transplant survival. The Lancet 357(9270):1758-61. June 2, 2001.

DRUG

WATCH

Liu, R. and others. Homozygous defect in HIV-1 coreceptor accounts for resistance of

some multiply-exposed individuals to HIV-1 infection. Cell 86(3): 36777. August 9, 1996.

Mayer, H. and others. Safety and efficacy of maraviroc (MVC), a novel CCR5 antagonist,

when used in combination with optimized background therapy (OBT) for the treatment

of antiretroviral-experienced subjects infected with dual/mixed-tropic HIV-1: 24-week

results of a phase 2b exploratory trial. 16th IAC. Abstract THLB0215.

Schurmann, D. and others. SCH D: antiviral activity of a CCR5 receptor antagonist.

11th Conference on Retroviruses and Opportunistic Infections (CROI). San Francisco.

February 811, 2004. Abstract 140LB.

Westby, M. and others. Emergence of CXCR4-using human immunodeficiency virus

type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with

the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir.

Journal of Virology 80(10):490920. May 2006.

Wilkin, T. and others. Co-receptor tropism in patients screening for ACTG 5211, a

phase 2 study of vicriviroc, a CCR5 inhibitor. 13th CROI. Denver. February 58, 2006.

Abstract 655.

Two New Antiretroviral Classes Nearing Approval

A major highlight of this year's Retrovirus conference was the presentation of promising data on two experimental agents, Pfizer's CCR5 antagonist maraviroc (Celsentri) and Merck's integrase inhibitor raltegravir (Isentress; formerly MK-0518). For the first time in years, two new classes of antiretroviral agents--both of which target novel steps in the HIV lifecycle--are nearing the end of the development pipeline. This offers new hope for treatment-experienced individuals who have HIV that is resistant to existing drug classes, and the best outcomes may be obtained by using the new drugs together. John Mellors, MD, of the University of Pittsburgh characterized the findings as the most exciting development since the advent of protease inhibitors in the mid-1990s.

Maraviroc

On June 20, Pfizer announced that the U.S. Food and Drug Administration (FDA) has issued a letter granting approvable status to maraviroc. This status change does not mean that maraviroc is approved for sale; further details must be resolved before the agency can approve the drug for marketing. The FDA's Antiviral Drug Advisory Committee unanimously voted to recommend accelerated approval in April, but the panel requested additional data on use of the drug in women and people of color.

The recommendation was based on data from the MOTIVATE-1 and MOTIVATE-2 studies, as presented at the Retrovirus conference (abstracts 104aLB, 104bLB). These two identical Phase IIb/III trials included heavily treatment- experienced subjects with triple-class antiretroviral resistance. MOTIVATE-1 included 601 participants in North America, while MOTIVATE-2 included 475 subjects in Europe, Australia, and the U.S. Participants in all study arms were generally similar; about 90% were men, the median CD4 cell count was 150-180 cells/mm3, and the mean HIV viral load was about 65,000 copies/mL.

Subjects with CCR5-tropic HIV were randomly assigned to receive oral maraviroc at doses of 150 mg once or twice daily or else placebo, in combination with an optimized background regimen. About 40% also took enfuvirtide (Fuzeon; T-20); 62%-76% had two or fewer other active drugs in their regimens.

After 24 weeks, virological response rates were about twice as high in the maraviroc arms compared with the placebo arms; 45.6%-48.5% of patients in the maraviroc twice-daily arms and 40.8%-42.2% in the maraviroc oncedaily arms achieved viral loads below 50 copies/mL, compared with 20.9%-24.6% in the placebo arms. Among individuals with no active background drugs, 29%, 18%, and 3%, respectively, achieved virological suppression; participants who also received enfuvirtide had a better response. CD4 cell counts increased from baseline by 102-112 cells/mm3 in the maraviroc arms, compared with 52-64 cells/mm3 in the placebo arms.

Adverse events were similar in the maraviroc and placebo arms, with about 5% of participants discontinuing treatment prematurely. However, there were no signs of significant liver toxicity, which had led to the abandonment of another CCR5 inhibitor candidate, aplaviroc. More subjects in the maraviroc arm experienced a shift in HIV coreceptor usage from CCR5-tropic to CXCR4-tropic or dual/mixed-tropic virus (for an explanation of HIV coreceptor tropism, see Drug Watch in the Winter 2007 issue of BETA).

Pfizer is conducting another Phase III trial of maraviroc in treatment-naive patients. The drug is currently available to eligible patients through an international expanded access program (see www.maraviroceap.com for more information).

Raltegravir

On June 27, Merck announced that the FDA has accepted a New Drug Application (NDA) for the company's investigational HIV integrase inhibitor raltegravir and granted the drug priority review status. This status is designed to speed approval of experimental agents that address unmet medical needs. The FDA is expected to review and act on the NDA within six months.

Raltegravir, which prevents HIV from inserting its genetic material into host cells, is the first drug in its class to be considered for approval. Data included in the NDA submission support the use of raltegravir in combination with other antiretroviral drugs for treatment-experienced patients with evidence of continued HIV replication despite ongoing antiretroviral therapy.

In two presentations at the conference, researchers described results from BENCHMRK-1 and BENCHMRK-2 (abstracts 104aLB, 104bLB), also identical Phase IIb/III trials involving heavily treatment-experienced and drug-resistant patients; BENCHMRK-1 included 350 participants in Europe, Asia, and Peru, while BENCHMRK-2 included 349 subjects in North and South America. Here, too, participants in the study arms were similar, with about 90% men, a mean CD4 cell count of about 150 cells/mm3, and mean HIV viral loads of 30,000-50,000 copies/mL.

Participants were randomly assigned to receive either 400 mg oral raltegravir twice daily or placebo, in addition to an optimized background regimen. Results at 16 weeks were presented for all subjects, and 60% had 240-week data available. Further raltegravir study data were published in the April 14, 2007, issue of The Lancet.

In the two studies combined, 61%-62% of patients inthe raltegravir arms achieved virological suppression below 50 copies/mL, compared with 33%-36% in the placebo arms. Among subjects with no other active drugs in their regimens, 61% achieved viral loads below 400 copies/mL with raltegravir, compared with only 5% taking placebo. Among subjects who started enfuvirtide and darunavir (Prezista) at the same time, 98% achieved virological suppression with raltegravir. CD4 cell gains were about 85 cells/mm3 in the raltegravir arms and 30-40 cells/mm3 in the placebo arms.

While the FDA considers Merck's NDA, raltegravir is available to qualified patients through an expanded access program (see www.benchmrk.com/secure/earmrk/earmrk.html or call 1-877-EARMRK1).


Previous
7 panel drug screen
Next
Lightheadedness

  
  • Email Email
  • Glossary Glossary


 
Advertisement




Q&A TERMS OF USE

This forum is designed for educational purposes only, and experts are not rendering medical, mental health, legal or other professional advice or services. If you have or suspect you may have a medical, mental health, legal or other problem that requires advice, consult your own caregiver, attorney or other qualified professional.

Experts appearing on this page are independent and are solely responsible for editing and fact-checking their material. Neither TheBody.com nor any advertiser is the publisher or speaker of posted visitors' questions or the experts' material.

Review our complete terms of use and copyright notice.

Powered by ExpertViewpoint

Advertisement